技术博客 技术博客
  • JAVA
  • 仓颉
  • 设计模式
  • 人工智能
  • Spring
  • Mybatis
  • Maven
  • Git
  • Kafka
  • RabbitMQ
  • RocketMQ
  • Redis
  • Zookeeper
  • Nginx
  • 数据库套件
  • MySQL
  • Elasticsearch
  • MongoDB
  • Hadoop
  • ClickHouse
  • Hbase
  • Hive
  • Flink
  • Flume
  • SQLite
  • linux
  • Docker
  • Jenkins
  • Kubernetes
  • 工具
  • 前端
  • AI
GitHub (opens new window)
  • JAVA
  • 仓颉
  • 设计模式
  • 人工智能
  • Spring
  • Mybatis
  • Maven
  • Git
  • Kafka
  • RabbitMQ
  • RocketMQ
  • Redis
  • Zookeeper
  • Nginx
  • 数据库套件
  • MySQL
  • Elasticsearch
  • MongoDB
  • Hadoop
  • ClickHouse
  • Hbase
  • Hive
  • Flink
  • Flume
  • SQLite
  • linux
  • Docker
  • Jenkins
  • Kubernetes
  • 工具
  • 前端
  • AI
GitHub (opens new window)
  • kafka

    • kafka-2.7.0 基本概念
    • Kafka-2.7.0 搭建及参数解析
    • kafka-2.7.0 spring boot 集成 kafka
    • kafka-2.7.0 kafka Connect
    • kafka-2.7.0 Kafka Streams 流处理
  • RabbitMQ

    • rabbitmq 简介
  • RocketMQ

    • RocketMQ 基础概念
    • RocketMQ 搭建
    • RocketMQ 整合spring boot
  • redis

    • Redis 介绍及安装
    • Redis 命令介绍
    • Redis 分布式锁介绍
      • 这种方式有几大要点:
      • 除了要考虑客户端要怎么实现分布式锁之外,还需要考虑redis的部署问题,redis有3种部署方式:
      • 另一种方式:Redisson
      • 对于redis的分布式锁而言,它有以下缺点:
    • Redis 事务介绍
    • Redis 的key失效通知介绍
    • Redis 配置文件解读
    • Redis 记一次宕机排查
    • Redis 高可用(一) 主从理论
    • Redis 高可用(二) 哨兵理论
    • Redis 高可用(三) 搭建
    • Redis 集群搭建
  • zookeeper

    • Zookeeper 介绍及安装
    • Zookeeper 做为锁使用
  • nginx

    • nginx-1.18.0 安装
    • nginx 常见问题总结
    • nginx 高可用
  • 数据库套件

    • MyCat 1.6.7(一)MySQL高可用及分库分表
    • MyCat 1.6.7(二)高可用及权限
    • shardingsphere 4.x(一)Sharding-JDBC使用
    • shardingsphere 4.x(二)Sharding-Proxy使用
目录

Redis 分布式锁介绍

使用 Redis 做分布式锁的思路大概是这样的:在 redis 中设置一个值表示加了锁,然后释放锁的时候就把这个 key 删除。
具体代码如下:

// 获取锁
// NX是指如果key不存在就成功,key存在返回false,PX可以指定过期时间
SET anyLock unique_value NX PX 30000


// 释放锁:通过执行一段lua脚本
// 释放锁涉及到两条指令,这两条指令不是原子性的
// 需要用到redis的lua脚本支持特性,redis执行lua脚本是原子性的
if redis.call("get",KEYS[1]) == ARGV[1] then
return redis.call("del",KEYS[1])
else
return 0
end
1
2
3
4
5
6
7
8
9
10
11
12
13

# 这种方式有几大要点:

  • 一定要用 SET key value NX PX milliseconds 命令
    如果不用,先设置了值,再设置过期时间,这个不是原子性操作,有可能在设置过期时间之前宕机,会造成死锁 (key 永久存在)

  • value 要具有唯一性
    这个是为了在解锁的时候,需要验证 value 是和加锁的一致才删除 key。
    这是避免了一种情况:假设 A 获取了锁,过期时间 30s,此时 35s 之后,锁已经自动释放了,A 去释放锁,但是此时可能 B 获取了锁。A 客户端就不能删除 B 的锁了。

# 除了要考虑客户端要怎么实现分布式锁之外,还需要考虑 redis 的部署问题,redis 有 3 种部署方式:

  • 单机模式
  • master-slave + sentinel 选举模式
  • redis cluster 模式

使用 redis 做分布式锁的缺点在于:如果采用单机部署模式,会存在单点问题,只要 redis 故障了。加锁就不行了。

采用 master-slave 模式,加锁的时候只对一个节点加锁,即便通过 sentinel 做了高可用,但是如果 master 节点故障了,发生主从切换,此时就会有可能出现锁丢失的问题。

基于以上的考虑,其实 redis 的作者也考虑到这个问题,他提出了一个 RedLock 的算法,这个算法的意思大概是这样的:
假设 redis 的部署模式是 redis cluster,总共有 5 个 master 节点,通过以下步骤获取一把锁:

  • 获取当前时间戳,单位是毫秒
  • 轮流尝试在每个 master 节点上创建锁,过期时间设置较短,一般就几十毫秒
  • 尝试在大多数节点上建立一个锁,比如 5 个节点就要求是 3 个节点(n / 2 +1)
  • 客户端计算建立好锁的时间,如果建立锁的时间小于超时时间,就算建立成功了
  • 要是锁建立失败了,那么就依次删除这个锁
  • 只要别人建立了一把分布式锁,你就得不断轮询去尝试获取锁

但是这样的这种算法还是颇具争议的,可能还会存在不少的问题,无法保证加锁的过程一定正确。

# 另一种方式:Redisson

此外,实现 Redis 的分布式锁,除了自己基于 redis client 原生 api 来实现之外,还可以使用开源框架:Redission

Redisson 是一个企业级的开源 Redis Client,也提供了分布式锁的支持。我也非常推荐大家使用,为什么呢?

回想一下上面说的,如果自己写代码来通过 redis 设置一个值,是通过下面这个命令设置的。

SET anyLock unique_value NX PX 30000
1

这里设置的超时时间是 30s,假如我超过 30s 都还没有完成业务逻辑的情况下,key 会过期,其他线程有可能会获取到锁。

这样一来的话,第一个线程还没执行完业务逻辑,第二个线程进来了也会出现线程安全问题。所以我们还需要额外的去维护这个过期时间,太麻烦了~

我们来看看 redisson 是怎么实现的?先感受一下使用 redission 的爽:

Config config = new Config();
config.useClusterServers()
.addNodeAddress("redis://192.168.31.101:7001")
.addNodeAddress("redis://192.168.31.101:7002")
.addNodeAddress("redis://192.168.31.101:7003")
.addNodeAddress("redis://192.168.31.102:7001")
.addNodeAddress("redis://192.168.31.102:7002")
.addNodeAddress("redis://192.168.31.102:7003");

RedissonClient redisson = Redisson.create(config);


RLock lock = redisson.getLock("anyLock");
lock.lock();
lock.unlock();
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

就是这么简单,我们只需要通过它的 api 中的 lock 和 unlock 即可完成分布式锁,他帮我们考虑了很多细节:

  • redisson 所有指令都通过 lua 脚本执行,redis 支持 lua 脚本原子性执行
  • redisson 设置一个 key 的默认过期时间为 30s, 如果某个客户端持有一个锁超过了 30s 怎么办?
    redisson 中有一个 watchdog 的概念,翻译过来就是看门狗,它会在你获取锁之后,每隔 10 秒帮你把 key 的超时时间设为 30s
    这样的话,就算一直持有锁也不会出现 key 过期了,其他线程获取到锁的问题了。
  • redisson 的 “看门狗” 逻辑保证了没有死锁发生。
    如果机器宕机了,看门狗也就没了。此时就不会延长 key 的过期时间,到了 30s 之后就会自动过期了,其他线程可以获取到锁)

# 对于 redis 的分布式锁而言,它有以下缺点:

  • 它获取锁的方式简单粗暴,获取不到锁直接不断尝试获取锁,比较消耗性能。
  • 另外来说的话,redis 的设计定位决定了它的数据并不是强一致性的 (redis 一直性问题看这里 (opens new window)),在某些极端情况下,可能会出现问题。锁的模型不够健壮
  • 即便使用 redlock 算法来实现,在某些复杂场景下,也无法保证其实现 100% 没有问题,关于 redlock 的讨论可以看 How to do distributed locking
  • redis 分布式锁,其实需要自己不断去尝试获取锁,比较消耗性能。

但是另一方面使用 redis 实现分布式锁在很多企业中非常常见,而且大部分情况下都不会遇到所谓的 “极端复杂场景”

所以使用 redis 作为分布式锁也不失为一种好的方案,最重要的一点是 redis 的性能很高,可以支撑高并发的获取、释放锁操作。

spring boot 整合 redisson 的两种方式:
自己配置方式:https://www.cnblogs.com/yangzhilong/p/7605807.html
spring boot starter 方式:https://blog.csdn.net/a1058926697/article/details/116670391

上次更新: 6/11/2025, 4:10:30 PM
Redis 命令介绍
Redis 事务介绍

← Redis 命令介绍 Redis 事务介绍→

Theme by Vdoing | Copyright © 2023-2025
  • 跟随系统
  • 浅色模式
  • 深色模式
  • 阅读模式