技术博客 技术博客
  • JAVA
  • 仓颉
  • 设计模式
  • 人工智能
  • Spring
  • Mybatis
  • Maven
  • Git
  • Kafka
  • RabbitMQ
  • RocketMQ
  • Redis
  • Zookeeper
  • Nginx
  • 数据库套件
  • MySQL
  • Elasticsearch
  • MongoDB
  • Hadoop
  • ClickHouse
  • Hbase
  • Hive
  • Flink
  • Flume
  • SQLite
  • linux
  • Docker
  • Jenkins
  • Kubernetes
  • 工具
  • 前端
  • AI
GitHub (opens new window)
  • JAVA
  • 仓颉
  • 设计模式
  • 人工智能
  • Spring
  • Mybatis
  • Maven
  • Git
  • Kafka
  • RabbitMQ
  • RocketMQ
  • Redis
  • Zookeeper
  • Nginx
  • 数据库套件
  • MySQL
  • Elasticsearch
  • MongoDB
  • Hadoop
  • ClickHouse
  • Hbase
  • Hive
  • Flink
  • Flume
  • SQLite
  • linux
  • Docker
  • Jenkins
  • Kubernetes
  • 工具
  • 前端
  • AI
GitHub (opens new window)
  • mysql

    • MySQL 问题汇总
    • MySQL 索引介绍
    • MySQL 锁介绍
    • MySQL 索引优化工具 explain
    • MySQL 主从复制(GTID)
    • MySQL 8安装
    • MySQL 8.x新特性总结
    • MySQL UDF以及新类型JSON
    • MySQL 高可用MGR(一) 理论
    • MySQL 高可用MGR(二) 搭建
    • MySQL 高可用MGR(三) 测试
  • Elasticsearch

    • ES 7.8.0(一) 入门介绍
    • ES 7.8.0(二) 读、写和写索引流程以及文档分析过程
    • ES 7.8.0(三) 文档冲突
  • mongodb

    • mongodb
  • hadoop

    • Hadoop 伪分布式及集群
    • Hadoop 指令
    • Hadoop 读写流程详解
    • Hadoop SpringBoot集成
    • Hadoop MapReduce机制
    • Hadoop YARN
    • Hadoop MapReduce配置和编写job及数据倾斜的解决
    • Hadoop MapReduce自定义格式输入输出
  • clickhouse

    • ClickHouse 介绍及安装
    • ClickHouse 数据类型
    • ClickHouse 表引擎
    • ClickHouse SQL操作
      • Insert
      • Update 和 Delete
      • 查询操作
      • alter 操作
      • 导出数据
    • ClickHouse 副本配置
    • ClickHouse 分片与集群部署
    • ClickHouse Explain及建表优化
    • ClickHouse 语法优化规则
    • ClickHouse 查询优化
    • ClickHouse 数据一致性
    • ClickHouse 物化视图
    • ClickHouse MaterializeMySQL引擎
    • ClickHouse 监控及备份
  • hbase

    • Hbase 介绍及安装
    • Hbase 优化
    • Hbase phoenix安装及使用
    • Hbase LSM-TREE
  • hive

    • Hive 介绍及安装
    • Hive 内外部表、分区表、分桶表概念及hiveSQL命令
    • Hive 数据类型
    • Hive 函数 MySQL联合
    • Hive 数据倾斜和优化
    • Hive Sqoop安装及指令
  • flink

    • Flink 介绍及安装
    • Flink 配置介绍及Demo
    • Flink API讲解
    • Flink 运行架构
    • Flink 时间语义及Watermark
    • Flink 状态管理
    • Flink 容错,检查点,保存点
    • Flink 状态一致性
    • Flink Table API 和 Flink SQL
    • Flink CEP编程
    • Flink Joining编程
    • Flink CDC
  • flume

    • Flume 日志收集系统介绍及安装
    • Flume Source支持的类型
    • Flume Sink支持的类型
    • Flume Channel支持的类型
    • Flume Selector
    • Flume Interceptor拦截器类型
    • Flume Process
  • sqlite

    • SQLite介绍
目录

ClickHouse SQL操作

本文及后续所有文章都以 21.7.3.14-2 做为版本讲解和入门学习

基本上来说传统关系型数据库(以 MySQL 为例)的 SQL 语句,ClickHouse 基本都支持,这里不会从头讲解 SQL 语法只介绍 ClickHouse 与标准 SQL(MySQL)不一致的地方。

# Insert

基本与标准 SQL(MySQL)一致,都是用如下语法

insert into [table_name] values(…),(….)
1

若是从表到表的插入

insert into [table_name] select a,b,c from [table_name_2]
1

# Update 和 Delete

ClickHouse 提供了 Delete 和 Update 的能力,这类操作被称为 Mutation 查询,它可以看做 Alter 的一种。

虽然可以实现修改和删除,但是和一般的 OLTP 数据库不一样,Mutation 语句是一种很 “重” 的操作,而且不支持事务。

“重” 的原因主要是每次修改或者删除都会导致放弃目标数据的原有分区,重建新分区。所以尽量做批量的变更,不要进行频繁小数据的操作。

删除操作

alter table t_order_smt delete where sku_id ='sku_001';
1

修改操作

alter table t_order_smt update total_amount=toDecimal32(2000.00,2) where id=102;
1

由于操作比较 “重”,所以 Mutation 语句分两步执行,同步执行的部分其实只是进行新增数据新增分区并把旧分区打上逻辑上的失效标记。直到触发分区合并的时候,才会删除旧数据释放磁盘空间,一般不会开放这样的功能给用户,由管理员完成。

# 查询操作

ClickHouse 基本上与标准 SQL 差别不大
➢ 支持子查询
➢ 支持 CTE (Common Table Expression 公用表表达式 with 子句)
➢ 支持各种 JOIN,但是 JOIN 操作无法使用缓存,所以即使是两次相同的 JOIN 语句,ClickHouse 也会视为两条新 SQL
➢ 窗口函数
➢ 不支持自定义函数
➢ GROUP BY 操作增加了 with rollup\with cube\with totals 用来计算小计和总计。

  • rollup:类似于 group by a,b,会分成 group by a;group by a,b。
  • cube:group by a,b,会分成 group by a,b;group by a;group by b;还有查看所有(select * from table 不带 group by)。
  • totals:group by a,b;查看所有(select * from table 不带 group by);全部聚合。

更多操作可以通过官方文档查看 https://clickhouse.com/docs/zh/sql-reference/functions/

语法

select id,sku_id,sum(total_amount) from t_order_mt group by id,sku_id with rollup;
1

# alter 操作

同 MySql 的修改字段基本一致
新增字段语法

alter table 表名 add column 列名 类型(String等) afte 哪一列后面;
1

修改字段语法

alter table 表名 modify column 列名 类型(String等);
1

删除字段语法

alter table 表名 drop column 列名;
1

# 导出数据

clickhouse-client --query "select * from 表名 where create_time = '2021-10-29 16:00:00'" --format CSVWithNames > /home/data/1.cvs
1

更多导入导出看官网 (opens new window)

上次更新: 6/11/2025, 4:10:30 PM
ClickHouse 表引擎
ClickHouse 副本配置

← ClickHouse 表引擎 ClickHouse 副本配置→

Theme by Vdoing | Copyright © 2023-2025
  • 跟随系统
  • 浅色模式
  • 深色模式
  • 阅读模式